Solutions To Statistical Mechanics (2)

Solutions To Statistical Mechanics (2) - Hallo friendsUPDATE NEWS AND HOT, In the article you read this time with the title Solutions To Statistical Mechanics (2), We have prepared this article for you to read and retrieve information therein. Hopefully the contents of postings Article ECONOMY, Article GENERAL, Article LATEST, Article POLITICAL, Article TIPS, We write this you can understand. Alright, good read.

Title : Solutions To Statistical Mechanics (2)
link : Solutions To Statistical Mechanics (2)

Read too


Solutions To Statistical Mechanics (2)

1) For the plasma bifurcation, when: F(xm, y) F >  1 there will be two real and two complex roots. Find the two real roots. 

Solution:    We are given the  original dispersion equation:

F(w) =   (me/mi)/ (  w / w e)2 + 1/ [(w / w )  2 - (k Vow e)2  ]


Let:  x =  w/ w e       And:    y = k Vo/ w e

Then:

1= F(x, y) = (me/mi)/ x 2+ 1/ (x2 - y2)
   
Now focus on  Fm    for F(x,y)  whereby  Fm    >   1 and there will be two real roots  (See e.g. Fm   defined in the graph below and  xm   in relation to it, i.e. for the dotted midline from x-axis crossing the F=1 line).

No automatic alt text available.

Now, take:

 x  F(x,y)  =   -2(me/mi)/ x3   -   2/ (x - y) 

Or:   x  F(xm, y) =  0

And we note:      x  F(xm, y) =   6 (me/mi)/ x4   -  6/ (x - y)  4     is always +ve


Whence:   Fm   ~   (me/mi1/3 /  y 2+   1/  y2     

So   Fm   >  1 requires:

y   <     [ (me/mi1/3  +   1 ] 1/2

So   in the long wavelength limit, the two real roots can be deduced to approach

x  =   y +  1    and   x =   y  - 1    Or  ( in terms of   w ) :

w  =
 k Vo    w e


k Vo   -    w e


2) Explain how the plasma bifurcation above occurs mathematically

The plasma bifurcation occurs because of a counter streaming plasma flow (i.e. for ions and electrons) in velocity space, which leads to a split symmetrical solution as well as a symmetrical one - but in a different direction relative to the coordinate axes.  "Instability" then occurs when the (dispersion) equation has complex roots, i.e. .when the local minimum (   Fm    ). is greater than 1,


Thus Article Solutions To Statistical Mechanics (2)

That's an article Solutions To Statistical Mechanics (2) This time, hopefully can give benefits to all of you. well, see you in posting other articles.

You are now reading the article Solutions To Statistical Mechanics (2) with the link address https://updated-1news.blogspot.com/2019/01/solutions-to-statistical-mechanics-2.html

Subscribe to receive free email updates:

0 Response to "Solutions To Statistical Mechanics (2)"

Post a Comment